nn1 [CS231n] Lecture 2 | Image Classification 이미지(image)는 숫자로 이루어진 3D array로 구성되어 있다. 컴퓨터는 이미지를 픽셀 값 즉, 숫자로 생각한다. 이미지가 조금만 달라져도 모든 픽셀 값은 달라진다. 그렇기에 우리가 만드는 알고리즘은 이런 상황에 대해 강인해야한다. (보는 시각의 달라짐, 조명, 형태의 변형, 은닉, 배경과 구분 안되는 상황, 클래스내의 구분 등등) 기본적인 image classifier는 이미지를 인자로 받아서 예측을 하는 것이다. 그 이미지가 어느 쪽에 속하는지 label를 반환하는 기본적인 함수를 말한다. 이미지를 구분할 때 직관적이고 명시적인 알고리즘(Hard Code)는 없다. 과거에는 이미지를 보고 특징점들을 찾아내고 edges와 corners를 계산하여 분류하려 했다. 하지만 위 접근방법에는 많은 한계.. 2020. 10. 14. 이전 1 다음